208 research outputs found

    Faster-than-Nyquist transmission for wireless and optical fibre communication

    Get PDF
    Faster-than-Nyquist transmission (FTN) is a well-known paradigm for digital communication which has received renewed attention in the wake of the need for increasing spectral efficiency in wireless and optical fibre communication. FTN surrenders the concept of transmitting orthogonal signal elements for the benefit of tighter packing of data into time-frequency resources and thus higher data rates in the same Fourier bandwidth. In this presentation, we will revisit the underlying principles of FTN, including the associated achievable rates, and we will elaborate on its pros and cons for modern communication systems. We will illustrate its use in the domains of wireless and optical fibre communication and present selected numerical results to highlight its potential as an resource efficient signaling scheme

    Adaptive Delivery in Caching Networks

    Full text link
    The problem of content delivery in caching networks is investigated for scenarios where multiple users request identical files. Redundant user demands are likely when the file popularity distribution is highly non-uniform or the user demands are positively correlated. An adaptive method is proposed for the delivery of redundant demands in caching networks. Based on the redundancy pattern in the current demand vector, the proposed method decides between the transmission of uncoded messages or the coded messages of [1] for delivery. Moreover, a lower bound on the delivery rate of redundant requests is derived based on a cutset bound argument. The performance of the adaptive method is investigated through numerical examples of the delivery rate of several specific demand vectors as well as the average delivery rate of a caching network with correlated requests. The adaptive method is shown to considerably reduce the gap between the non-adaptive delivery rate and the lower bound. In some specific cases, using the adaptive method, this gap shrinks by almost 50% for the average rate.Comment: 8 pages,8 figures. Submitted to IEEE transaction on Communications in 2015. A short version of this article was published as an IEEE Communications Letter with DOI: 10.1109/LCOMM.2016.255814

    Hardware Impairments Aware Transceiver Design for Bidirectional Full-Duplex MIMO OFDM Systems

    Full text link
    In this paper we address the linear precoding and decoding design problem for a bidirectional orthogonal frequencydivision multiplexing (OFDM) communication system, between two multiple-input multiple-output (MIMO) full-duplex (FD) nodes. The effects of hardware distortion as well as the channel state information error are taken into account. In the first step, we transform the available time-domain characterization of the hardware distortions for FD MIMO transceivers to the frequency domain, via a linear Fourier transformation. As a result, the explicit impact of hardware inaccuracies on the residual selfinterference (RSI) and inter-carrier leakage (ICL) is formulated in relation to the intended transmit/received signals. Afterwards, linear precoding and decoding designs are proposed to enhance the system performance following the minimum-mean-squarederror (MMSE) and sum rate maximization strategies, assuming the availability of perfect or erroneous CSI. The proposed designs are based on the application of alternating optimization over the system parameters, leading to a necessary convergence. Numerical results indicate that the application of a distortionaware design is essential for a system with a high hardware distortion, or for a system with a low thermal noise variance.Comment: Submitted to IEEE for publicatio

    Bayesian Phase Search for Probabilistic Amplitude Shaping

    Full text link
    We introduce a Bayesian carrier phase recovery (CPR) algorithm which is robust against low signal-to-noise ratio scenarios. It is therefore effective for phase recovery for probabilistic amplitude shaping (PAS). Results validate that the new algorithm overcomes the degradation experienced by blind phase-search CPR for PAS.Comment: 4 pages, 2 figures. Submitted to the 49th European Conference on Optical Communication

    Interference Mitigation for coded MB-OFDM UWB

    Get PDF
    Frequency Division Multiplexing (MB-OFDM) standard for high rate Ultra Wideband (UWB) wireless communication in the 3.1– 10.6 GHz band. The performance of MB-OFDM is impacted by interference from IEEE 802.16 WiMAX systems operating in the licensed 3.5 GHz band. Motivated by recent work showing the approximately Gaussian nature of the WiMAX interference to MB-OFDM, we propose a simple two-stage interference mitigation technique for coded MB-OFDM transmissions according to the ECMA-368 standard, consisting of interference spectrum estimation during silent periods followed by appropriate bit metric weighting during Viterbi decoding. We compare parametric and non-parametric spectrum estimation techniques for coded MB-OFDM transmissions and WiMAX interference for various scenarios of interest. The proposed two-stage interference mitigation technique is shown to be highly effective at mitigating the impact of WiMAX interference
    corecore